I ensembles de nombres

1. <u>les nombres entiers</u>

définition

0;1;2;3;... sont les nombres entiers naturels.

l'ensemble de ces nombres est noté ${\rm IN}$ (comme naturel) (ici on se déplace de 1 en 1)

ex 7? IN mais -7? IN et 3,8? IN.

définition

 \dots ;-3;-2;-1;0;1;2;3;... sont les nombres entiers relatifs. (ils sont négatifs, positifs ou nuls) l'ensemble de ces nombres est noté Z (comme zahl qui signifie nombre en allemand)

(ici on se déplace de -1 en -1 et de 1 en 1)

ex: 7? IN mais -7? IN et 3,8? IN

remarque: IN? Z « IN est inclus dans Z » c'est à dire que tout entier naturel est un entier relatif.

2. les nombres rationnels

définition

les nombres rationnels sont les quotient $\frac{a}{b}$ où a est un entier relatif et b un entier relatif <u>non nul</u>.

l'écriture $\frac{a}{b}$ est appelée écriture fractionnaire.

l'ensemble de ces nombres est noté Q (comme quotient)

remarque Z? Q

en effet, soit a ? Z. on sait que $a = \frac{a}{1}$

comme 1 ? Z et 1 ? 0 alors $\frac{a}{1}$? Q

donc a? Q

d'où si a? Z alors a? Q i.e Z? Q

ex: 7? Q;
$$\frac{5}{2}$$
? Q; $\frac{1}{3}$? Q; 3,8? Q car 3,8 = $\frac{38}{10}$

remarque

un même nombre rationnel peut s'écrire sous forme fractionnaire d'une infinité de façons.

par exemple,
$$\frac{4}{3} = \frac{8}{6} = \frac{12}{9} = \frac{20}{15} = \frac{24}{18} = \dots$$

 $(\operatorname{car} \frac{a}{b} = \frac{ka}{ka}$ où a, b, k sont des entiers relatifs, b et k non nuls)

3. cas particuliers : les nombres décimaux

définition

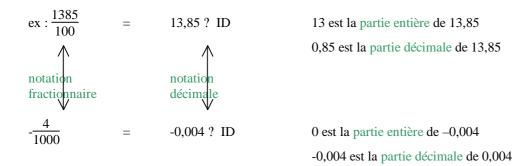
les nombres qui sont le quotient d'un entier relatif par une puissance de dix sont appelés nombres décimaux (décimal \iff dix) l'ensemble de ces nombres est noté ID (comme décimal)

remarques

$$\rightarrow$$
 ID? Q

les décimaux sont des rationnels particuliers (10^p ? 0 et 10^p ? Z, p ? IN)

comme on divise un entier par une puissance de dix cela signifie que les décimaux sont des nombres à virgules ayant un nombre fini de chiffres après la virgule



$$\frac{3}{4} = \frac{75}{100}$$
? ID

mais $\frac{1}{3}$? ID car on ne peut pas se ramener à une puissance de dix au dénominateur. de plus $\frac{1}{3}$ = 0,33333333..... l'écriture décimale ne s'arrête pas.

critère pour reconnaître un nombre décimal sous forme fractionnaire.

sous forme irréductible, le dénominateur n'est qu'un produit de 2 et/ou de 5.

propriété et définition

tout nombre décimal peut s'écrire a? 10^p ou -a? 10^p où a est un décimal tel que $\underline{1?a < 10}$ (i.e ayant un seul chiffre avant la virgule autre que 0) et p un entier relatif.

cette écriture est appelée notation scientifique du nombre.

10^p est appelé l'ordre de grandeur du nombre.

remarque

cette écriture est souvent plus commode notamment pour comparer des nombres (il faut juste comparer les « a ») ; changer d'unité ;donner l'ordre de grandeur du résultat d'une opération. elle est très utile en physique-chimie.

10⁶ est l'ordre de grandeur de 2328423

 $-0,00032 = -3,2?10^{-4}$ sur la calculatrice -3.2 E-4

10⁻⁴ est l'ordre de grandeur de -0,00032

4. les autres nombres

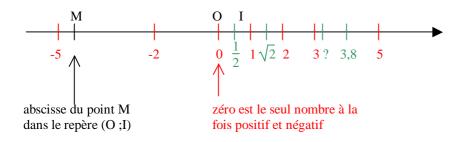
ils existent des nombres qui n'appartiennent à aucun des ensembles que nous venons de voir.

on démontre par exemple que $\sqrt{2}$? Q; $\frac{-\sqrt{3}}{2}$? Q; ? ? Q

ces nombres sont appelés nombres irrationnels (i.e « qui ne sont pas rationnels »)

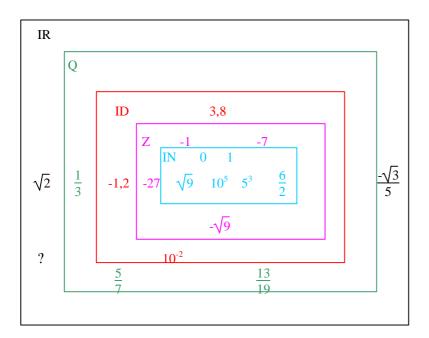
ils appartiennent avec tous les nombres précédents à 1 'ensemble des nombres réels qui est noté IR (comme réel)

l'ensembles des nombres réels est aussi l'ensemble des abscisses des points d'une droite graduée. (c'est à dire munie d'un repère (O;I)). cette droite, qui représente alors IR est appelée droite des réels ou droite numérique.



les différents ensembles de nombres sont emboîtés

on a donc IN? Z? ID? Q? IR



remarques:

dans les exercices « soit x un nombre quelconque » sera désormais remplacé par : « soit x ? IR » ou « soit x un nombre réel »

le signe * placé en haut à droite de la lettre désignant un ensemble de nombres, prive celui-ci de zéro. ainsi IR* désigne les réels non nuls.

le signe + – placé en haut à droite de la lettre désignant un ensemble de nombre, prive celui-ci des nombres négatifs positifs ainsi IR⁺ désigne l'ensemble des réels positifs (avec zéro)

IR désigne l'ensemble des réels négatifs (avec zéro)

5. valeur approchée

définition

on appelle valeur approchée d'un nombre x à la précision e ou à e près tout nombre a tel que a - e? x? a + e

<u>ex</u>: 1,4 est une valeur approchée de $\sqrt{2}$ à 0,01 près (10^{-1} près) car 1,4 – 0,1 ? $\sqrt{2}$? 1,4 + 0,1 1,4 = a 0,1 = e $\sqrt{2}$ = x

II nombres premiers

1. <u>diviseur d'un nombre entier naturel</u>

définition

soit a? IN, b? IN*

on dit que b est un diviseur de a s'il existe un entier naturel k tel que a = k?b

$$ex : 12 = 4 ? 3 = 1 ? 12 = 6 ? 2$$

4, 3, 1, 12, 6 et 2 sont des diviseurs de 12
par contre 5 n'est pas un diviseur de 12 car 12 ? 5 ? IN

2. nombres premiers

définition

un nombre entier naturel est premier s'il admet exactement deux diviseurs : 1 et lui-même

<u>ex</u>: 12 n'est pas premier 5 est premier

les premiers nombres premiers :

2;3;5;7;11;13;17;19;.....

(voir crible d'Eratosthène cahier d'exercices)

remarques

1 n'est pas premier car il n'a qu'un seul diviseur : 1

2 est le seul nombre premier pair

il y a un infinité de nombre premier

3. <u>décomposition en produit de facteurs premiers</u>

théorème

tout entier naturel non premier se décompose en produit de facteurs premiers

$$ex : 28 = 2 ? 14 = 2 ? 2 ? 7 = 2^2 ? 7$$

$$60 = 2 ? 30 = 2 ? 2 ? 15 = 2 ? 2 ? 3 ? 5 = 2^2 ? 3 ? 5$$

4. <u>critère de divisibilité</u>

par 2 : le nombre se termine par un chiffre pair : 0, 2, 4, 6, 8

par 3 : la somme des chiffres du nombres est divisible par 3

par 5 : le nombre se termine par 0 ou 5

par 9 : la somme des chiffres du nombre est divisible par 9

par 10 : le nombre est divisible par 2 et 5 c'est à dire il se termine par 0

5. application

a) simplifier les fractions

$$\frac{84}{60} = \frac{2?2?3?7}{2?2?3?5} = \frac{7}{5}$$
 fraction irréductible

b) simplifier les racines carrées

$$\sqrt{2100} = \sqrt{2?2?3?5?5?7}
= \sqrt{2^2?5^2?3?7}
= \sqrt{(2?5)^2?3?7}
= \sqrt{(2?5)^2?\sqrt{3?7}}
= 2?5?\sqrt{3?7}
= 10\sqrt{21}$$

c) <u>calculer le PGCD de deux nombres entiers naturels</u>

pgcd(36; 120) = ?

36	2	120	2	
18	2	60	2	
9	3	30	2	pgcd (36; 120) = 2 ? 2 ? 3 = 12
3	3	15	3	
1		5	5	
	ı		1	